cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A301930 G.f. A(x,y) satisfies: A(x,y) = x * (1 + y*A(x,y)*A'(x,y)) / (1 + A(x,y)*A'(x,y)), where A'(x,y) = d/dx A(x,y).

Original entry on oeis.org

1, -1, 1, 4, -7, 3, -25, 63, -52, 14, 200, -661, 808, -432, 85, -1890, 7754, -12586, 10090, -3989, 621, 20248, -99450, 201726, -216125, 128869, -40504, 5236, -240069, 1375831, -3354625, 4508559, -3604985, 1713731, -448122, 49680, 3102000, -20349633, 58049510, -94012374, 94504280, -60352776, 23900178, -5362906, 521721, -43226590, 319817454, -1046234664, 1985688420, -2408884136, 1936407600, -1031098592, 350561508, -69025155, 5994155
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2018

Keywords

Comments

Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k = x + (-1 + y)*x^2 + (4 - 7*y + 3*y^2)*x^3 +  (-25 + 63*y - 52*y^2 + 14*y^3)*x^4 + (200 - 661*y + 808*y^2 - 432*y^3 + 85*y^4)*x^5 + (-1890 + 7754*y - 12586*y^2 + 10090*y^3 - 3989*y^4 + 621*y^5)*x^6 + ...
such that A = A(x,y) satisfies A = x*(1 + y*A*A')/(1 + A*A').
This triangle of coefficients T(n,k) in A(x,y) begins:
[1];
[-1, 1];
[4, -7, 3];
[-25, 63, -52, 14];
[200, -661, 808, -432, 85];
[-1890, 7754, -12586, 10090, -3989, 621];
[20248, -99450, 201726, -216125, 128869, -40504, 5236];
[-240069, 1375831, -3354625, 4508559, -3604985, 1713731, -448122, 49680];
[3102000, -20349633, 58049510, -94012374, 94504280, -60352776, 23900178, -5362906, 521721];
[-43226590, 319817454, -1046234664, 1985688420, -2408884136, 1936407600, -1031098592, 350561508, -69025155, 5994155]; ...
SPECIAL CASES.
G.f. C(x) of column 0 satisfies: C = x - C'*C^2, and begins C(x) = x - x^2 + 4*x^3 - 25*x^4 + 200*x^5 - 1890*x^6 +...
G.f. D(x) of the main diagonal satisfies: D = x + x*D'*D, and begins D(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + ...
At y = 2, the row polynomials evaluate to form the Catalan numbers:
1 = 1;
1 = -1 + 1*2;
2 = 4 + -7*2 + 3*2^2;
5 = -25 + 63*2 + -52*2^2 + 14*2^3;
14 = 200 + -661*2 + 808*2^2 + -432*2^3 + 85*2^4;
42 = -1890 + 7754*2 + -12586*2^2 + 10090*2^3 + -3989*2^4 + 621*2^5; ...
illustrating: C(2*n-1,n-1)/(2*n-1) = Sum_{k=0..n-1} T(n,k) * 2^k.
Note: when the g.f. A(x,y) is evaluated at y < 2 and y not= 1, the resulting power series in x will have negative coefficients somewhere in the expansion.
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(A=x); for(i=1,n, A = x*(1 + y*A*A')/(1 + A*A' +x*O(x^n))); polcoeff(polcoeff(A,n,x),k,y)}
    /* Print as a triangle */
    for(n=1,10,for(k=0,n-1, print1(T(n,k),", "));print(""))
    /* Print as a flattened triangle: */
    for(n=1,10, for(k=0,n-1, print1(T(n,k),", "); );)

Formula

Column 0 equals A088716 (signed).
Main diagonal equals A182304.
Row sums are zeros after the initial row.
Absolute row sums = A301931.
Sum_{k=0..n-1} T(n,k) * 2^k = C(2*n-1,n-1)/(2*n-1) = A000108(n-1) for n>=1.
Sum_{k=0..n-1} T(n,k) * 3^k = A301932(n) for n>=1.
Sum_{k=0..n-1} T(n,k) * 4^k = A301933(n) for n>=1.
Limit of largest real root of row polynomials converges to 2.

A301932 G.f. A(x) satisfies: A(x) = x*(1 + 3*A(x)*A'(x)) / (1 + A(x)*A'(x)).

Original entry on oeis.org

1, 2, 10, 74, 710, 8322, 115018, 1828962, 32852526, 657188258, 14477811178, 348100068698, 9067809569750, 254354791759298, 7642986480897930, 244923580410697938, 8337728465913016926, 300482221889444825154, 11429089791630856291018, 457542303069698601849194, 19230862148761320966737254, 846710680545018639230252418
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2018

Keywords

Comments

Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + 2*x^2 + 10*x^3 + 74*x^4 + 710*x^5 + 8322*x^6 + 115018*x^7 + 1828962*x^8 + 32852526*x^9 + 657188258*x^10 + ...
such that A = A(x) satisfies: A = x*(1 + 3*A*A')/(1 + A*A').
RELATED SERIES.
A(x)*A'(x) = x + 6*x^2 + 48*x^3 + 470*x^4 + 5448*x^5 + 73374*x^6 + 1132000*x^7 + 19752822*x^8 + 385285080*x^9 + 8311631702*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(L=x); for(i=1,n, L = x*(1 + 3*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L,n)}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) ~ c * 2^n * n!, where c = 0.181799839377767875340143846... - Vaclav Kotesovec, Oct 14 2020

A301933 G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)).

Original entry on oeis.org

1, 3, 24, 291, 4596, 88230, 1979088, 50570823, 1446341388, 45706515546, 1580322048288, 59318131995822, 2401809350808552, 104347127373249036, 4842030589556434656, 239028273094016840223, 12508863342589554285372, 691783629316556340447570, 40316336264435949765811968
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2018

Keywords

Comments

Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n = 2^k) is odd for k>=0, and a(n) is even elsewhere (conjecture).

Examples

			G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ...
such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A').
Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0.
RELATED SERIES.
A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ...
Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(L=x); for(i=1,n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L,n)}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.113581779257198505098700336... - Vaclav Kotesovec, Oct 14 2020
Showing 1-3 of 3 results.