A301933 G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)).
1, 3, 24, 291, 4596, 88230, 1979088, 50570823, 1446341388, 45706515546, 1580322048288, 59318131995822, 2401809350808552, 104347127373249036, 4842030589556434656, 239028273094016840223, 12508863342589554285372, 691783629316556340447570, 40316336264435949765811968
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ... such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A'). Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0. RELATED SERIES. A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ... Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..400
Programs
-
PARI
{a(n) = my(L=x); for(i=1,n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L,n)} for(n=1,30,print1(a(n),", "))
Formula
a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.113581779257198505098700336... - Vaclav Kotesovec, Oct 14 2020
Comments