A301978 Euler transform of A065958.
1, 1, 6, 16, 51, 127, 367, 897, 2342, 5662, 13894, 32656, 77076, 176586, 403526, 904140, 2013267, 4418167, 9628682, 20741434, 44362988, 93984842, 197731390, 412619250, 855408327, 1760687593, 3601827236, 7321181534, 14796204874, 29730215150, 59419375058
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[Sum[MoebiusMu[k/d]^2*d^2, {d, Divisors@k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
Formula
G.f.: Product_{k>=1} 1/(1-x^k)^A065958(k).
a(n) ~ exp(4*(7*Zeta(3))^(1/4) * n^(3/4) / sqrt(3*Pi) - sqrt(Pi) * n^(1/4) / (4*3^(3/2) * (7*Zeta(3))^(1/4)) - Zeta(3) / (4*Pi^2)) * 3^(1/4) * (7*Zeta(3))^(1/8) / (2^(3/2) * Pi^(3/4) * n^(5/8)).