A065958 a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2).
1, 5, 10, 20, 26, 50, 50, 80, 90, 130, 122, 200, 170, 250, 260, 320, 290, 450, 362, 520, 500, 610, 530, 800, 650, 850, 810, 1000, 842, 1300, 962, 1280, 1220, 1450, 1300, 1800, 1370, 1810, 1700, 2080, 1682, 2500, 1850, 2440, 2340, 2650, 2210
Offset: 1
References
- József Sándor, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, American Research Press, Rehoboth 2002, pp. 193.
Links
- E. Pérez Herrero, Table of n, a(n) for n = 1..10000
- F. A. Lewis and others, Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.
- R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 Chapter 3.14.2
Crossrefs
Programs
-
Maple
A065958 := proc(n) local i,j,k,t1,t2,t3; t1 := ifactors(n)[2]; t2 := n^2*mul((1+1/(t1[i][1])^2),i=1..nops(t1)); end;
-
Mathematica
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A065958[n_]:=JordanTotient[n,4]/JordanTotient[n,2]; (* Enrique Pérez Herrero, Aug 22 2010 *) f[p_, e_] := p^(2*e) + p^(2*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
-
PARI
for(n=1,100,print1(n*sumdiv(n,d,moebius(d)^2/d^2),","))
-
PARI
a(n)=sumdiv(n,d,moebius(n/d)^2*d^2); /* Joerg Arndt, Jul 06 2011 */
Formula
Multiplicative with a(p^e) = p^(2*e) + p^(2*e-2). - Vladeta Jovovic, Dec 09 2001
a(n) = n^2 * Sum_{d|n} mu(d)^2/d^2 - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(d)^2*d^2. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s). Dirichlet convolution of A008966 and A000290. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/(p^4 - 1)) = 1.5421162831401587416523241690601522041445615542162573163112157073779258386... - Vaclav Kotesovec, Sep 19 2020
a(n) = Sum_{d|n} d*phi(d)*psi(n/d). - Ridouane Oudra, Jan 01 2021
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} psi(gcd(n,k))*n/gcd(n,k), where psi(n) = A001615(n).
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 315*zeta(3)/Pi^6 = 0.393854... . - Amiram Eldar, Oct 19 2022
Comments