cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301979 Number of subset-sums minus number of subset-products of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 0, 3, 0, 2, 0, 4, 0, 3, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 5, 0, 2, 0, 4, 0, 2, 0, 5, 0, 4, 0, 4, 0, 2, 0, 5, 0, 3, 0, 4, 0, 4, 0, 6, 0, 2, 0, 4, 0, 2, 0, 6, 0, 4, 0, 4, 0, 3, 0, 5, 0, 2, 0, 4, 0, 4, 0, 6, 0, 2, 0, 5, 0, 2, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A subset-sum (or subset-product) of a multiset y is any number equal to the sum (or product) of some submultiset of y.
First negative entry is a(165) = -1.
This sequence is unbounded above and below.

Examples

			The distinct subset-sums of (4,2,1,1) are 0, 1, 2, 3, 4, 5, 6, 7, 8, while the distinct subset-products are 1, 2, 4, 8, so a(84) = 9 - 4 = 5.
The distinct subset-sums of (5,3,2) are 0, 2, 3, 5, 7, 8, 10, while the distinct subset-products are 1, 2, 3, 5, 6, 10, 15, 30, so a(165) = 7 - 8 = -1.
		

Crossrefs

Programs

  • Mathematica
    Table[With[{ptn=If[n===1,{},Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Length[Union[Plus@@@Subsets[ptn]]]-Length[Union[Times@@@Subsets[ptn]]]],{n,100}]
  • PARI
    A003963(n) = {n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n)};
    A301957(n) = {my(ds = divisors(n)); for(i=1,#ds,ds[i] = A003963(ds[i])); #Set(ds)};
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A299701(n) = {my(ds = divisors(n)); for(i=1,#ds,ds[i] = A056239(ds[i])); #Set(ds)};
    A301979(n) = (A299701(n) - A301957(n)); \\ Antti Karttunen, Oct 07 2018

Formula

a(n) = A299701(n) - A301957(n).