A301983 Irregular triangle read by rows T(n, k), n >= 1 and 1 <= k <= A301977(n): T(n, k) is the k-th positive number whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.
1, 1, 2, 1, 3, 1, 2, 4, 1, 2, 3, 5, 1, 2, 3, 6, 1, 3, 7, 1, 2, 4, 8, 1, 2, 3, 4, 5, 9, 1, 2, 3, 4, 5, 6, 10, 1, 2, 3, 5, 7, 11, 1, 2, 3, 4, 6, 12, 1, 2, 3, 5, 6, 7, 13, 1, 2, 3, 6, 7, 14, 1, 3, 7, 15, 1, 2, 4, 8, 16, 1, 2, 3, 4, 5, 8, 9, 17, 1, 2, 3, 4, 5, 6
Offset: 1
Examples
Triangle begins: 1: [1] 2: [1, 2] 3: [1, 3] 4: [1, 2, 4] 5: [1, 2, 3, 5] 6: [1, 2, 3, 6] 7: [1, 3, 7] 8: [1, 2, 4, 8] 9: [1, 2, 3, 4, 5, 9] 10: [1, 2, 3, 4, 5, 6, 10] 11: [1, 2, 3, 5, 7, 11] 12: [1, 2, 3, 4, 6, 12] 13: [1, 2, 3, 5, 6, 7, 13] 14: [1, 2, 3, 6, 7, 14] 15: [1, 3, 7, 15] 16: [1, 2, 4, 8, 16]
Links
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, {0}, map(x-> [x, 2*x+r][], b(iquo(n, 2, 'r')))) end: T:= n-> sort([(b(n) minus {0})[]])[]: seq(T(n), n=1..20); # Alois P. Heinz, Jan 26 2022
-
PARI
T(n,k) = my (b=binary(n), s=Set(1)); for (i=2, #b, s = setunion(s, Set(apply(v -> 2*v+b[i], s)))); return (s[k])
Formula
T(n, 1) = 1.
T(n, A301977(n)) = n.
T(2^n, k) = 2^(k-1) for any n > 0 and k = 1..n+1.
T(2^n - 1, k) = 2^k - 1 for any n > 0 and k = 1..n.
Comments