A301985 a(n) = n^2 + 2329*n + 1697.
1697, 4027, 6359, 8693, 11029, 13367, 15707, 18049, 20393, 22739, 25087, 27437, 29789, 32143, 34499, 36857, 39217, 41579, 43943, 46309, 48677, 51047, 53419, 55793, 58169, 60547, 62927, 65309, 67693, 70079, 72467, 74857, 77249, 79643, 82039, 84437, 86837, 89239, 91643, 94049, 96457, 98867, 101279
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Al Zimmermann, Prime Generating Polynomials contest, 2006.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2+2329*n+1697: n in [0..50]]; // Vincenzo Librandi, Mar 31 2018
-
Mathematica
Table[n^2 + 2329 n + 1697, {n, 0, 50}] (* Vincenzo Librandi, Mar 31 2018 *)
-
PARI
a(n) = n^2 + 2329*n + 1697; \\ Altug Alkan, Mar 30 2018
-
PARI
Vec((1697 - 1064*x - 631*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Mar 30 2018
Formula
a(n) = 2*a(n-1) - a(n-2) + 2, a(0) = 1697, a(1) = 4027.
From Colin Barker, Mar 30 2018: (Start)
G.f.: (1697 - 1064*x - 631*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: exp(x)*(1697 + 2330*x + x^2). - Elmo R. Oliveira, Feb 10 2025
Comments