A301987 Heinz numbers of integer partitions whose product is equal to their sum.
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1
Keywords
Examples
Sequence of reversed integer partitions begins: (1), (2), (3), (4), (2 2), (5), (6), (7), (8), (9), (10), (1 2 3), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (1 1 2 4), (24), (25), (26), (27), (28), (1 1 2 2 2), (29), (30).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> (l-> mul(i, i=l)=add(i, i=l))(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..300])[]; # Alois P. Heinz, Mar 27 2019
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[300],Total[primeMS[#]]===Times@@primeMS[#]&]
Comments