cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301989 a(n) is the number of ways to write n as i * j * k where 2 <= i <= sqrt(n), i < j <= min(2 * i - 1, floor(n / i)), k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 1, 0, 1, 1, 0, 3, 0, 0, 0, 5, 0, 0, 0
Offset: 1

Views

Author

David A. Corneth, Mar 30 2018

Keywords

Comments

a(n) > 0 implies n is in A005279.

Crossrefs

Cf. A005279.

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    V:= Vector(N):
    for i from 1 to isqrt(N-1) do
      for j from i+1 to min(floor(N/i),2*i-1) do
        for k from 1 to floor(N/(i*j)) do
          n:= i*j*k;
          V[n]:= V[n]+1;
    od od od:
    convert(V,list); # Robert Israel, Apr 04 2018
  • Mathematica
    M = 100;
    V = Table[0, {M}];
    For[i = 1, i <= Sqrt[M-1], i++,
      For[j = i+1, j <= Min[Floor[M/i], 2i-1], j++,
        For[k = 1, k <= Floor[M/(i j)], k++,
          n = i j k;
          V[[n]] = V[[n]]+1;
    ]]];
    V (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
  • PARI
    upto(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = i+1, min(2 * i - 1, n \ i), for(k = 1, n \ (i * j), res[i*j*k]++))); res}