A301989 a(n) is the number of ways to write n as i * j * k where 2 <= i <= sqrt(n), i < j <= min(2 * i - 1, floor(n / i)), k >= 1.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 1, 0, 1, 1, 0, 3, 0, 0, 0, 5, 0, 0, 0
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A005279.
Programs
-
Maple
N:= 100: # to get a(1)..a(N) V:= Vector(N): for i from 1 to isqrt(N-1) do for j from i+1 to min(floor(N/i),2*i-1) do for k from 1 to floor(N/(i*j)) do n:= i*j*k; V[n]:= V[n]+1; od od od: convert(V,list); # Robert Israel, Apr 04 2018
-
Mathematica
M = 100; V = Table[0, {M}]; For[i = 1, i <= Sqrt[M-1], i++, For[j = i+1, j <= Min[Floor[M/i], 2i-1], j++, For[k = 1, k <= Floor[M/(i j)], k++, n = i j k; V[[n]] = V[[n]]+1; ]]]; V (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
-
PARI
upto(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = i+1, min(2 * i - 1, n \ i), for(k = 1, n \ (i * j), res[i*j*k]++))); res}
Comments