A302016 Expansion of 1/(1 - x - x^2/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...)))))), a continued fraction.
1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 46, 68, 102, 153, 229, 342, 510, 761, 1136, 1697, 2535, 3786, 5653, 8441, 12605, 18824, 28112, 41981, 62691, 93617, 139800, 208768, 311761, 465564, 695242, 1038226, 1550415, 2315284, 3457489, 5163181, 7710344, 11514102, 17194374, 25676907, 38344147
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Programs
-
Mathematica
nmax = 44; CoefficientList[Series[1/(1 - x - x^2/(1 + ContinuedFractionK[x^k, 1, {k, 2, nmax}])), {x, 0, nmax}], x] nmax = 44; CoefficientList[Series[1/(1 - x QPochhammer[x^2, x^5] QPochhammer[x^3, x^5]/(QPochhammer[x, x^5] QPochhammer[x^4, x^5])), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - x*Product_{k>=1} (1 - x^(5*k-2))*(1 - x^(5*k-3))/((1 - x^(5*k-1))*(1 - x^(5*k-4)))).
a(0) = 1; a(n) = Sum_{k=1..n} A003823(k-1)*a(n-k).
a(n) ~ c / r^n, where r = 0.669643458685499460127124120930664114507093547265881... is the root of the equation x*QPochhammer[x^2, x^5]*QPochhammer[x^3, x^5] = QPochhammer[x, x^5]*QPochhammer[x^4, x^5] and c = 0.833333547701931811823757549354805979633827853516233646128015838266... - Vaclav Kotesovec, Jun 08 2019