A302039 Analog of A056239 for nonstandard factorization based on the sieve of Eratosthenes (A083221).
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 7, 6, 13, 7, 14, 7, 8, 10, 15, 6, 8, 7, 8, 8, 16, 7, 9, 7, 8, 11, 17, 7, 18, 12, 8, 6, 8, 8, 19, 9, 9, 8, 20, 7, 21, 13, 9, 10, 9, 8, 22, 7, 9, 14, 23, 8, 10, 15, 9, 8, 24, 9, 12, 11, 10, 16, 9, 7, 25, 9, 10, 8, 26, 9, 27, 9, 10
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639, by Hasler. A055396(n) = if(1==n,0,primepi(A020639(n))); v078898 = ordinal_transform(vector(up_to,n,A020639(n))); A078898(n) = v078898[n]; A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); A302039(n) = if(1==n,0,A055396(n) + A302039(A302042(n)));
Comments