cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302057 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^5 is zero.

Original entry on oeis.org

1560, 1802, 1838, 2318, 2690, 3174, 3742, 3925, 4348, 4710, 4854, 5002, 5092, 5210, 7484, 7615, 8796, 8846, 9500, 10345, 12110, 14178, 14972, 16203, 18010, 19314, 20207, 20406, 20679, 24566, 25231, 27403, 27532, 28361, 31567, 31573, 35610, 35795, 37347
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2018

Keywords

Comments

Numbers k such that number of partitions of k into an even number of distinct parts equals number of partitions of k into an odd number of distinct parts, with 5 types of each part.

Crossrefs

Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m = 1), A213250 (m = 2), A014132 (m = 3), A302056 (m = 4), this sequence (m = 5), A020757 (m = 6), A322043 (m = 15).
Cf. A000728.

Programs

  • Mathematica
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[QPochhammer[x]^5, {x, 0, nmax}], x]], 0]]
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[Sum[(-1)^j x^(j (3 j + 1)/2), {j, -nmax, nmax}]^5, {x, 0, nmax}], x]], 0]]
    Flatten[Position[nmax = 38000; Rest[CoefficientList[Series[Exp[-5 Sum[DivisorSigma[1, j] x^j/j, {j, 1, nmax}]], {x, 0, nmax}], x]], 0]]
    (* 4th program: *)
    sigma[k_] := sigma[k] = DivisorSigma[1, k];
    a[0] = 1; a[n_] := a[n] = -5/n Sum[sigma[k] a[n-k], {k, 1, n}];
    Reap[For[k = 1, k <= 10^5, k++, If[a[k] == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 20 2018 *)
  • PARI
    x='x+O('x^30000); v=Vec(eta(x)^5 - 1); for(k=1, #v, if(v[k]==0, print1(k, ", "))); \\ Altug Alkan, Mar 31 2018, after Joerg Arndt at A213250