A302093 a(n) = floor(C(n/2)*C(n/2+1)), where C = Catalan numbers (A000108).
1, 1, 2, 4, 10, 25, 70, 199, 588, 1784, 5544, 17569, 56628, 185202, 613470, 2054998, 6952660, 23732911, 81662152, 283026021, 987369656, 3465222945, 12228193432, 43369190282, 154532114800, 552998717472, 1986841476000, 7164993393905, 25928281261800, 94132464529902
Offset: 0
Keywords
Examples
k a(k) is prime 2 2 7 199 11 17569 17 23732911 81 102313363987695596246576033222404783284068513 619 200823128294216578246...307006792344011246479 (366 digits)
Links
- Robert Israel, Table of n, a(n) for n = 0..1667
Programs
-
Maple
a108:= n -> binomial(2*n,n)/(n+1): seq(floor(a108(n/2)*a108(n/2+1)),n=0..40); # Robert Israel, May 12 2025
-
Mathematica
Table[Floor[CatalanNumber[n/2] CatalanNumber[n/2 + 1]], {n, 0, 35}]