A302102 G.f. A(x) satisfies: A(x) = 1 + x * (x*A(x)^4)' / (x*A(x))'.
1, 1, 6, 60, 796, 12873, 243648, 5274630, 128693820, 3501032280, 105278025690, 3473075317080, 124851287129604, 4860913404292030, 203839755469977840, 9161170785398640570, 439317870410796482460, 22390147212903891054540, 1208526686930226056003640, 68866979112831866042953128, 4131396903316522288744806384, 260262349821990852529147365849
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 796*x^4 + 12873*x^5 + 243648*x^6 + 5274630*x^7 + 128693820*x^8 + 3501032280*x^9 + 105278025690*x^10 + ... such that A(x) = 1 + x * (x*A(x)^4)' / (x*A(x))'.
Programs
-
PARI
/* Differential Equation */ {a(n) = my(A=1); for(i=0,n, A = 1 + x*(x*A^4)'/(x*A +x^2*O(x^n))'); polcoeff(A,n)} for(n=0, 30, print1(a(n),", "))
Formula
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3 * (A(x) + 4*x*A'(x)) / (A(x) + x*A'(x)).
Comments