A302172 Distance from sigma(n) to nearest multiple of phi(n).
0, 0, 0, 1, 2, 0, 2, 1, 1, 2, 2, 0, 2, 0, 0, 1, 2, 3, 2, 2, 4, 4, 2, 4, 9, 6, 4, 4, 2, 0, 2, 1, 8, 6, 0, 5, 2, 6, 8, 6, 2, 0, 2, 4, 6, 6, 2, 4, 15, 7, 8, 2, 2, 6, 8, 0, 8, 6, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 8, 0, 2, 3, 2, 6, 4, 4, 24, 0, 2, 6, 13, 6, 2, 8, 20, 6, 8, 20, 2, 6, 32, 8, 8, 6, 24, 4, 2, 3, 24, 17
Offset: 1
Examples
a(21) = 4 because sigma(21) = 32 and phi(21) = 12; 12*3 - 32 = 4 is the smallest corresponding distance.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
dsp[n_]:=Module[{s=DivisorSigma[1,n],p=EulerPhi[n],m},m=Floor[s/p];Abs[ Nearest[ {m*p,(m+1)p},s]-s]]; Array[dsp,100][[All,1]] (* Harvey P. Dale, Apr 29 2018 *)
-
PARI
a(n) = {my(k=0, s=sigma(n), p=eulerphi(n)); while((s+k) % p != 0 && (s-k) % p != 0, k++); k;}
Comments