A302179 The number of 3D walks of length n in an octant returning to axis of origin.
1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0
Links
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. The sequence is type aac in Table 3.
- Mélika Tebni, Fonctions de Bessel et cheminements en 3D, Dec 2024.
Crossrefs
Programs
-
PARI
C(n) = binomial(2*n, n)/(n+1); \\ A000108 f(n) = binomial(n, floor(n/2)); \\ A001405 a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020
Formula
a(n) = Sum_{i=0..n, j=0..n-i, i,j even} A126120(i) * A126120(j) * A001405(n-i-j) * n!/(i! * j! * (n-i-j)!). - Nachum Dershowitz, Aug 06 2020
E.g.f.: (BesselI(1, 2*x)/x)^2*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Mélika Tebni, Jan 06 2025
Extensions
a(13)-a(27) from Nachum Dershowitz, Aug 04 2020