A302182 Number of 3D walks of type abc.
1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0
Links
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Crossrefs
Programs
-
Python
from math import comb as binomial def row(n: int) -> list[int]: return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1)) for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024
Formula
Extensions
a(13)-a(25) from Mélika Tebni, Nov 27 2024
Comments