cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302185 Number of 3D n-step walks of type acc.

Original entry on oeis.org

1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
    C:= n-> binomial(2*n, n)/(n+1):
    a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
          (8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
          (80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
          (10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
           a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
  • Mathematica
    b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
    c[n_] := Binomial[2*n, n]/(n+1);
    a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def a(n):
        return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024

Formula

From Mélika Tebni, Dec 06 2024: (Start)
E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*BesselI(1, 2*x) / x.
a(n) = Sum_{k=0..n} binomial(n, k)*A005558(k)*A001405(n-k).
a(2*n+1) = 2*A302182(2*n+1) = A135394(n) / (n+1).
For n > 0, a(A000918(n)) is odd. (End)

Extensions

a(13)-a(25) from Mélika Tebni, Dec 06 2024
Showing 1-1 of 1 results.