A302184 Number of 3D walks of type abe.
1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0
Links
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Crossrefs
Programs
-
Maple
a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Nov 30 2024
-
Python
from math import comb as binomial def a(n: int): return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1)) print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024
Formula
Extensions
a(12)-a(25) from Mélika Tebni, Nov 30 2024
Comments