cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302201 E.g.f.: exp (e.g.f. for the "cusp form" A002408).

Original entry on oeis.org

1, 1, -7, 5, 193, -1273, -2707, 118827, -853551, -4449558, 165958491, -1452523488, -8908621939, 425284211536, -4941880813097, -19601696580922, 1717461768840017, -27768623874128015, 11072293576957975, 9641864176354481835
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2018

Keywords

Comments

Whenever there is an important cusp form (such as A002408, or the Ramanujan tau or Delta function A000594), with e.g.f. C(x), say, it seems that the sequence with e.g.f. exp(C(x)) should also have some interesting properties.

Crossrefs

Programs

  • Mathematica
    eta = QPochhammer;
    cc = CoefficientList[#, x]&;
    seq[n_] := Module[{A}, A = O[x]^n; cc[Exp[(cc[x*(eta[x + A]*(eta[x^4 + A]/eta[x^2 + A]))^8]*cc[Exp[x + x*A]]) . x^Range[0, n]] + O[x]^n]* Range[0, n-1]!];
    seq[20] (* Jean-François Alcover, Sep 07 2019, from PARI *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(serlaplace(exp(serconvol(x*(eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, exp(x + x*A)))))} \\ Andrew Howroyd, Nov 04 2018