cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302232 Triangle T(n,k) of the numbers of k-matchings in the n-Moebius ladder (0 <= k <= n, n > 2).

Original entry on oeis.org

1, 9, 18, 6, 1, 12, 42, 44, 7, 1, 15, 75, 145, 95, 13, 1, 18, 117, 336, 420, 192, 18, 1, 21, 168, 644, 1225, 1085, 371, 31, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 47, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 78, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 123
Offset: 3

Views

Author

Eric W. Weisstein, Apr 03 2018

Keywords

Comments

Initial terms in each row match those in A061702.

Examples

			As polynomials sum(k=0..n) x^k*T(n, k):
1 + 9*x + 18*x^2 + 6*x^3,
1 + 12*x + 42*x^2 + 44*x^3 + 7*x^4,
1 + 15*x + 75*x^2 + 145*x^3 + 95*x^4 + 13*x^5,
1 + 18*x + 117*x^2 + 336*x^3 + 420*x^4 + 192*x^5 + 18*x^6,
...
		

Crossrefs

Row sums are A020877.
Cf. A061702.

Programs

  • Mathematica
    CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + 3 x, 1 + 6 x + 3 x^2, 1 + 9 x + 18 x^2 + 6 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 7 x^4}, {3, 10}], x] // Flatten
    CoefficientList[CoefficientList[Series[-((-1 - 9 x - 18 x^2 - 6 x^3 - 2 x z - 15 x^2 z - 20 x^3 z - x^4 z - x^2 z^2 - 5 x^3 z^2 + 4 x^4 z^2 + 6 x^5 z^2 + x^4 z^3 + 6 x^5 z^3 + 3 x^6 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3))), {z, 0, 10}], z], x] // Flatten

Formula

G.f.: -((z^2*(-1 - 9*x - 18*x^2 - 6*x^3 - 2*x*z - 15*x^2*z - 20*x^3*z - x^4*z - x^2*z^2 - 5*x^3*z^2 + 4*x^4*z^2 + 6*x^5*z^2 + x^4*z^3 + 6*x^5*z^3 + 3*x^6*z^3))/((1 + x*z)*(1 - z - 2*x*z - x*z^2 + x^3*z^3))).
Writing t(n, x) = sum(k=0..n) x^k*T(n, k), t(n, x) == (1 + x)*t(n-1, x) + 2*x*(1 + x)*t(n-2, x) -(-1 + x)*x^2*t(n-3, x) -x^4*t(n-4, x).