A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
Offset: 1
Keywords
Examples
Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Sep 07 2018
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Total[PrimeOmega/@primeMS[n]],{n,100}]
-
PARI
a(n,f=factor(n))=sum(i=1,#f~, bigomega(primepi(f[i,1]))*f[i,2]) \\ Charles R Greathouse IV, Nov 10 2021
Comments