cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302252 Smallest number with exactly n divisors in Gaussian integers.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 8, 15, 16, 12, 32, 10, 64, 24, 36, 65, 256, 48, 512, 20, 72, 96, 2048, 30, 324, 192, 50, 40, 16384, 252, 32768, 195, 288, 768, 648, 80, 262144, 1536, 576, 60, 1048576, 504, 2097152, 160, 100, 6144, 8388608, 130, 5832, 1875, 2304, 320
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

The divisors are counted up to association.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n > 2 && PrimeQ[n], 2^((n-1)/2), Block[{k=1}, While[ DivisorSigma[0, k, GaussianIntegers -> True] != n, k++]; k]]; Array[a, 52] (* Giovanni Resta, Apr 04 2018 *)
  • PARI
    nbd(n) = {my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, r*=(2*e+1)); if(p%4==1, r*=(e+1)^2); if(p%4==3, r*=(e+1));); return(r);}  \\ A062327
    a(n) = {my(k=1); while (nbd(k) != n, k++); k;} \\ Michel Marcus, Apr 26 2018

Formula

For prime p > 2, a(p) = 2^((p-1)/2) = sqrt(A005179(p)).

Extensions

More terms from Giovanni Resta, Apr 04 2018