A302252 Smallest number with exactly n divisors in Gaussian integers.
1, 3, 2, 5, 4, 6, 8, 15, 16, 12, 32, 10, 64, 24, 36, 65, 256, 48, 512, 20, 72, 96, 2048, 30, 324, 192, 50, 40, 16384, 252, 32768, 195, 288, 768, 648, 80, 262144, 1536, 576, 60, 1048576, 504, 2097152, 160, 100, 6144, 8388608, 130, 5832, 1875, 2304, 320
Offset: 1
Keywords
Links
Programs
-
Mathematica
a[n_] := If[n > 2 && PrimeQ[n], 2^((n-1)/2), Block[{k=1}, While[ DivisorSigma[0, k, GaussianIntegers -> True] != n, k++]; k]]; Array[a, 52] (* Giovanni Resta, Apr 04 2018 *)
-
PARI
nbd(n) = {my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, r*=(2*e+1)); if(p%4==1, r*=(e+1)^2); if(p%4==3, r*=(e+1));); return(r);} \\ A062327 a(n) = {my(k=1); while (nbd(k) != n, k++); k;} \\ Michel Marcus, Apr 26 2018
Formula
For prime p > 2, a(p) = 2^((p-1)/2) = sqrt(A005179(p)).
Extensions
More terms from Giovanni Resta, Apr 04 2018
Comments