cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302256 Hyper-Wiener index of rows of unit cells on the face-centered cubic lattice.

Original entry on oeis.org

213, 942, 2956, 7326, 15447, 29038, 50142, 81126, 124681, 183822, 261888, 362542, 489771, 647886, 841522, 1075638, 1355517, 1686766, 2075316, 2527422, 3049663, 3648942, 4332486, 5107846, 5982897, 6965838, 8065192, 9289806, 10648851, 12151822
Offset: 1

Views

Author

Benedek Nagy, Apr 04 2018

Keywords

Comments

This sequence is related to the Wiener-index of the FCC grid (cf. A273322). Now the second order distances are also counted (see definition of Hyper-Wiener index).

Crossrefs

Cf. A273322.

Programs

  • Mathematica
    Table[(81*n^4 + 261*n^3 + 264*n^2 + 540*n + 132)/6, {n, 30}] (* Wesley Ivan Hurt, Jan 20 2024 *)
  • PARI
    a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6; \\ Altug Alkan, Apr 04 2018
    
  • PARI
    Vec(x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 11 2018

Formula

a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6. Proved in the Hamzeh Mujahed - Benedek Nagy paper.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5); with a(1)=213, a(2)=942, a(3)=2956, a(4)=7326 and a(5)=15447.
G.f.: x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5. - Colin Barker, Jun 11 2018

Extensions

a(5) corrected by Altug Alkan, Apr 04 2018