A302256 Hyper-Wiener index of rows of unit cells on the face-centered cubic lattice.
213, 942, 2956, 7326, 15447, 29038, 50142, 81126, 124681, 183822, 261888, 362542, 489771, 647886, 841522, 1075638, 1355517, 1686766, 2075316, 2527422, 3049663, 3648942, 4332486, 5107846, 5982897, 6965838, 8065192, 9289806, 10648851, 12151822
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hamzeh Mujahed, Benedek Nagy: Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice, Analele Universitatii "Ovidius" Constanta - Seria Matematica 26/1 (2018), 169-187.
- Wikipedia, Hyper-Wiener index
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A273322.
Programs
-
Mathematica
Table[(81*n^4 + 261*n^3 + 264*n^2 + 540*n + 132)/6, {n, 30}] (* Wesley Ivan Hurt, Jan 20 2024 *)
-
PARI
a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6; \\ Altug Alkan, Apr 04 2018
-
PARI
Vec(x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 11 2018
Formula
a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6. Proved in the Hamzeh Mujahed - Benedek Nagy paper.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5); with a(1)=213, a(2)=942, a(3)=2956, a(4)=7326 and a(5)=15447.
G.f.: x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5. - Colin Barker, Jun 11 2018
Extensions
a(5) corrected by Altug Alkan, Apr 04 2018
Comments