A302300 a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p.
0, 1, 1, 5, 6, 12, 21, 33, 50, 79, 116, 169, 246, 346, 487, 675, 927, 1254, 1702, 2263, 3014, 3966, 5210, 6766, 8795, 11303, 14531, 18521, 23583, 29803, 37654, 47231, 59206, 73792, 91867, 113778, 140788, 173377, 213289, 261318, 319764, 389846, 474745, 576164
Offset: 0
Keywords
Examples
For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears once, then square the total in each partition. 6............1^2 = 1 5,1..........2^2 = 4 4,2..........2^2 = 4 4,1,1........1^2 = 1 3,3..........0^2 = 0 3,2,1........3^2 = 9 3,1,1,1......1^2 = 1 2,2,2........0^2 = 0 2,2,1,1......0^2 = 0 2,1,1,1,1....1^2 = 1 1,1,1,1,1,1..0^2 = 0 -------------------- Total.............21
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
- Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398 [math.CO], 2008.
- Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29.
- W. J. Keith, Restricted k-color partitions, Ramanujan Journal (2016) 40: 71.
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, ( `if`(n=1, 1, 0)+p)^2, add(b(n-i*j, i-1, `if`(j=1, 1, 0)+p), j=0..n/i)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Apr 05 2018
-
Mathematica
Array[Total@ Map[Count[Split@ #, ?(Length@ # == 1 &)]^2 &, IntegerPartitions[#]] &, 43] (* _Michael De Vlieger, Apr 05 2018 *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, ( If[n == 1, 1, 0] + p)^2, Sum[b[n - i*j, i - 1, If[j == 1, 1, 0] + p], {j, 0, n/i}]]; a[n_] := b[n, n, 0]; a /@ Range[0, 60] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
-
Python
def frequencies(partition, n): tot = 0 freq_list = [] i = 0 for p in partition: freq = [0 for i in range(n+1)] for i in p: freq[i] += 1 for f in freq: if f == 0: tot += 1 freq_list.append(freq) return freq_list def sum_square_freqs_of_one(freq_part): tot = 0 for f in freq_part: count = 0 for i in f: if i == 1: count += 1 tot += count*count return tot import sympy.combinatorics def A302300(n): # rewritten by R. J. _Mathar, 2023-03-24 a =0 if n ==0 : return 0 part = sympy.combinatorics.IntegerPartition([n]) partlist = [] while True: part = part.next_lex() partlist.append(part.partition) if len(part.partition) <=1 : break freq_part = frequencies(partlist, n) return sum_square_freqs_of_one(freq_part) for n in range(20): print(A302300(n))
Formula
a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and k_j are the frequencies in p.
Comments