A302334 A weighted smoothing applied to the primes as a data set: a(n) = floor(A007443(2n-1)/2^(2n-2)), where A007443 is binomial transform of primes.
2, 3, 5, 7, 10, 13, 16, 20, 24, 28, 32, 36, 40, 44, 48, 53, 57, 61, 66, 70, 75, 79, 84, 89, 94, 98, 103, 108, 113, 119, 124, 129, 135, 140, 146, 151, 156, 162, 167, 172, 178, 183, 189, 194, 200, 205, 211, 216, 222, 228, 233, 239, 244, 250, 255, 261, 267, 273, 278, 284
Offset: 1
Keywords
Examples
For n=3, we calculate a weighted average of the first 2n - 1 = 5 primes. Row 2n - 2 = 4 of Pascal's triangle, (1,4,6,4,1), provides the weights, and its row sum is 2^4 = 16. Specifically, using the first formula, a(3) = floor( Sum_{k=0..4}(binomial(4,k)*prime(k+1)) / 2^4 ). The sum in the formula = 1*prime(1) + 4*prime(2) + 6*prime(3) + 4*prime(4) + 1*prime(5) = 1*2 + 4*3 + 6*5 + 4*7 + 1*11 = 2 + 12 + 30 + 28 + 11 = 83. So a(3) = floor(83/2^4) = floor(83/16) = 5. Comparison with the primes: (Start) Analysis table showing the difference between the start of this sequence and the start of the list of primes. a(n) is subtracted from prime(n) to give a sense of how prime(n) is lower or higher than it might be if the primes were more smoothly distributed. The column headed "cumulative" gives the partial sums of the previous column, which are then divided by n and rounded to 3 decimal places to give the final column. The final column therefore shows the difference between the arithmetic means of the first n primes and the first n terms of this sequence. n prime(n) a(n) difference cumulative average 1 2 2 0 0 0.000 2 3 3 0 0 0.000 3 5 5 0 0 0.000 4 7 7 0 0 0.000 5 11 10 1 1 0.200 6 13 13 0 1 0.167 7 17 16 1 2 0.286 8 19 20 -1 1 0.125 9 23 24 -1 0 0.000 10 29 28 1 1 0.100 11 31 32 -1 0 0.000 12 37 36 1 1 0.083 13 41 40 1 2 0.154 14 43 44 -1 1 0.071 15 47 48 -1 0 0.000 16 53 53 0 0 0.000 17 59 57 2 2 0.118 18 61 61 0 2 0.111 19 67 66 1 3 0.158 20 71 70 1 4 0.200 21 73 75 -2 2 0.095 22 79 79 0 2 0.091 23 83 84 -1 1 0.043 24 89 89 0 1 0.042 25 97 94 3 4 0.160 26 101 98 3 7 0.269 27 103 103 0 7 0.259 28 107 108 -1 6 0.214 29 109 113 -4 2 0.069 30 113 119 -6 -4 -0.133 31 127 124 3 -1 -0.032 32 131 129 2 1 0.031 (End)
Links
- Peter Munn, Table of n, a(n) for n = 1..500
- P. Marchand and L. Marmet, Binomial smoothing filter: A way to avoid some pitfalls of least square polynomial smoothing, Review of Scientific Instruments, 54, 1034-41, 1983.
- Wikipedia, Smoothing
Programs
-
Mathematica
a[n_] := Floor[ Sum[ Binomial[2n -2, k]*Prime[k +1]/2^(2n -2), {k, 0, 2n -2}]]; Array[a, 60] (* Robert G. Wilson v, Jun 10 2018 *)
-
PARI
a(n) = floor(sum(k=0, 2*n-2, (binomial(2*n-2,k) * prime(k+1))/2^(2*n-2))); \\ Michel Marcus, Aug 21 2018
Formula
a(n) = floor(Sum_{k=0..2n-2} (binomial(2n-2,k) * prime(k+1))/2^(2n-2)).
a(n) = floor(A007443(2n-1)/2^(2n-2)).
Extensions
a(51)-a(60) from Robert G. Wilson v, Jun 10 2018
Comments