cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302348 a(n) = Sum_{p in P} (H(2,p)^2)/2, where P is the set of partitions of n, and H(2,p) is the number of hooks of length 2 in p.

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 14, 18, 37, 50, 90, 122, 199, 270, 415, 559, 820, 1096, 1556, 2060, 2847, 3736, 5057, 6576, 8747, 11279, 14788, 18916, 24493, 31097, 39838, 50225, 63737, 79833, 100471, 125076, 156237, 193394, 239956, 295443, 364334, 446349, 547360, 667440
Offset: 0

Views

Author

Emily Anible, Apr 05 2018

Keywords

Comments

This sequence is part of the contribution to the b^2 term of the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two.
It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.

Examples

			For a(6), we sum over partitions of six. For each partition, we count 1 for each hook of length 2, then square the total in each partition. We divide the final result in half to get a(6).
6............1^2 = 1
5,1..........1^2 = 1
4,2..........2^2 = 4
4,1,1........2^2 = 4
3,3..........2^2 = 4
3,2,1........0^2 = 0
3,1,1,1......2^2 = 4
2,2,2........2^2 = 4
2,2,1,1......2^2 = 4
2,1,1,1,1....1^2 = 1
1,1,1,1,1,1..1^2 = 1
--------------------
Total.............28/2=14
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, l) option remember; `if`(n=0, p^2,
          `if`(i>n, 0, b(n, i+1, p, 1)+add(b(n-i*j, i+1, p+
          `if`(j>1, 1, 0)+l, 0), j=1..n/i)))
        end:
    a:= n-> b(n, 1, 0$2)/2:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 06 2018
  • Mathematica
    b[n_, i_, p_, l_] := b[n, i, p, l] = If[n == 0, p^2, If[i > n, 0, b[n, i + 1, p, 1] + Sum[b[n - i*j, i+1, p + If[j > 1, 1, 0]+l, 0], {j, 1, n/i}]]];
    a[n_] := b[n, 1, 0, 0]/2;
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)

Formula

G.f: (q^2*(1+q^2+2*q^4))/((1-q^2)*(1-q^4)*Product_{i>0} (1-q^i)).

A304825 Sum of binomial(Y(2,p), 2) over the partitions p of n, where Y(2,p) is the number of part sizes with multiplicity 2 or greater in p.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 22, 30, 50, 68, 105, 142, 210, 281, 400, 531, 736, 967, 1311, 1707, 2274, 2935, 3851, 4930, 6389, 8116, 10402, 13121, 16658, 20872, 26275, 32719, 40880, 50613, 62807, 77343, 95389, 116874, 143331, 174789, 213251, 258903, 314367, 380079, 459462
Offset: 6

Views

Author

Emily Anible, May 19 2018

Keywords

Examples

			For a(8), we sum over the partitions of eight. For each partition p, we take binomial(Y(2,p),2): that is, the number of parts with multiplicity at least two choose 2.
8................B(0,2) = 0
7,1..............B(0,2) = 0
6,2..............B(0,2) = 0
6,1,1............B(1,2) = 0
5,3..............B(0,2) = 0
5,2,1............B(0,2) = 0
5,1,1,1..........B(1,2) = 0
4,4..............B(1,2) = 0
4,3,1............B(0,2) = 0
4,2,2............B(1,2) = 0
4,2,1,1..........B(1,2) = 0
4,1,1,1,1........B(1,2) = 0
3,3,2............B(1,2) = 0
3,3,1,1..........B(2,2) = 1
3,2,2,1..........B(1,2) = 0
3,2,1,1,1........B(1,2) = 0
3,1,1,1,1,1......B(1,2) = 0
2,2,2,2..........B(1,2) = 0
2,2,2,1,1........B(2,2) = 1
2,2,1,1,1,1......B(2,2) = 1
2,1,1,1,1,1,1....B(1,2) = 0
1,1,1,1,1,1,1,1..B(1,2) = 0
---------------------------
Total.....................3
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          binomial(`if`(n>1, 1, 0)+p, 2), add(
          b(n-i*j, i-1, `if`(j>1, 1, 0)+p), j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=6..60);  # Alois P. Heinz, May 19 2018
  • Mathematica
    Array[Total[Binomial[Count[Split@#, _?(Length@# >= 2 &)], 2] & /@IntegerPartitions[#]] &, 50]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         Binomial[If[n > 1, 1, 0] + p, 2], Sum[
         b[n-i*j, i-1, If[j>1, 1, 0]+p], {j, 0, n/i}]];
    a[n_] := b[n, n, 0];
    a /@ Range[6, 60] (* Jean-François Alcover, May 30 2021, after Alois P. Heinz *)

Formula

a(n) = (A301313(n) - A024788(n))/4.
G.f.: q^6 /((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j).
Showing 1-2 of 2 results.