cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302351 Hyper-Wiener index of body-centered cubic grid cells in a row.

Original entry on oeis.org

92, 377, 1128, 2700, 5548, 10227, 17392, 27798, 42300, 61853, 87512, 120432, 161868, 213175, 275808, 351322, 441372, 547713, 672200, 816788, 983532, 1174587, 1392208, 1638750, 1916668, 2228517, 2576952, 2964728, 3394700, 3869823, 4393152, 4967842, 5597148
Offset: 1

Views

Author

Benedek Nagy, Jun 09 2018

Keywords

Programs

  • Mathematica
    Table[(25n^4+105n^3+143n^2+171n+108)/6,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{92,377,1128,2700,5548},40] (* Harvey P. Dale, Sep 19 2020 *)
  • PARI
    Vec(x*(92 - 83*x + 163*x^2 - 90*x^3 + 18*x^4 + 50*x^5 - 250*x^6 + 500*x^7 - 500*x^8 + 250*x^9 - 50*x^10) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 11 2018

Formula

a(n) = (25*n^4 + 105*n^3 + 143*n^2 + 171*n + 108)/6 (proven).
From Colin Barker, Jun 11 2018: (Start)
G.f.: x*(92 - 83*x + 163*x^2 - 90*x^3 + 18*x^4 + 50*x^5 - 250*x^6 + 500*x^7 - 500*x^8 + 250*x^9 - 50*x^10) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>11.
(End)

Extensions

Corrected and extended by Harvey P. Dale, Sep 19 2020