A302353 a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).
1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
Offset: 0
Keywords
Examples
For n = 4 we have: ------------------------ 0 1 2 3 [4] ------------------------ 0, 1, 17, 98, 354, ... A000538 (partial sums of fourth powers) 0, 1, 18, 116, 470, ... A101089 (partial sums of A000538) 0, 1, 19, 135, 605, ... A101090 (partial sums of A101089) 0, 1, 20, 155, 760, ... A101091 (partial sums of A101090) 0, 1, 21, 176, [936], ... A254681 (partial sums of A101091) ------------------------ therefore a(4) = 936.
Programs
-
Mathematica
Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]] Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]
Formula
a(n) ~ c * (r * (2-r)^(2-r) / (1-r)^(1-r))^n * n^n, where r = 0.69176629470097668698335106516328398961170464277337300459988208658267146... is the root of the equation (2-r) = (1-r) * exp(1/r) and c = 0.96374921279011282619632879505754646526289414675402231447188230355850496... - Vaclav Kotesovec, Apr 08 2018
Comments