cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302353 a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).

Original entry on oeis.org

1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Comments

a(n) is the n-th term of the main diagonal of iterated partial sums array of n-th powers (starting with the first partial sums).

Examples

			For n = 4 we have:
------------------------
0   1    2    3    [4]
------------------------
0,  1,  17,   98,  354,  ... A000538 (partial sums of fourth powers)
0,  1,  18,  116,  470,  ... A101089 (partial sums of A000538)
0,  1,  19,  135,  605,  ... A101090 (partial sums of A101089)
0,  1,  20,  155,  760,  ... A101091 (partial sums of A101090)
0,  1,  21,  176, [936], ... A254681 (partial sums of A101091)
------------------------
therefore a(4) = 936.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
    Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ c * (r * (2-r)^(2-r) / (1-r)^(1-r))^n * n^n, where r = 0.69176629470097668698335106516328398961170464277337300459988208658267146... is the root of the equation (2-r) = (1-r) * exp(1/r) and c = 0.96374921279011282619632879505754646526289414675402231447188230355850496... - Vaclav Kotesovec, Apr 08 2018