cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302354 Expansion of (Sum_{i>=1} x^prime(i))*(Sum_{j>=0} x^(j^3)).

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 3, 2, 2, 1, 2, 1, 1, 2, 2, 0, 1, 0, 2, 2, 2, 0, 2, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Comments

Number of representations of n as the sum of a prime number and a nonnegative cube.

Examples

			a(11) = 2 because 11 = 3 + 2^3 = 11 + 0^3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; Rest[CoefficientList[Series[Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^3, {j, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: (Sum_{i>=1} x^prime(i))*(Sum_{j>=0} x^(j^3)).