A302402 Total domination number of the n-ladder graph.
0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 16, 16, 16, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 24, 26, 26, 26, 28, 28, 28, 30, 30, 30, 32, 32, 32, 34, 34, 34, 36, 36, 36, 38, 38, 38, 40, 40, 40, 42, 42, 42, 44, 44, 44, 46, 46, 46, 48
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Total Domination Number
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1).
Programs
-
Mathematica
Table[2 Floor[(n + 2)/3], {n, 0, 20}] 2 Floor[(Range[0, 20] + 2)/3] Table[2/9 (3 + 3 n - 3 Cos[2 n Pi/3] + Sqrt[3] Sin[2 n Pi/3]), {n, 0, 20}] LinearRecurrence[{1, 0, 1, -1}, {2, 2, 2, 4}, {0, 20}] CoefficientList[Series[2 x/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x]
Formula
a(n) = 2*floor((n + 2)/3).
a(n) = 2/9*(3 + 3*n - 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3)).
a(n) = a(n-1) + a(n-3) - a(n-4).
G.f.: 2*x/((-1 + x)^2*(1 + x + x^2)).
a(n) = 2*A002264(n+2). - R. J. Mathar, May 02 2023
Comments