A302446 a(n) is the maximum remainder of p*q divided by p+q where p and q are primes with p <= q <= n.
0, 3, 3, 7, 7, 11, 11, 11, 11, 11, 11, 23, 23, 23, 23, 23, 23, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 43, 43, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 69, 69, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 91, 91, 91, 91, 91, 91, 103, 103, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 143, 143, 143, 143
Offset: 2
Examples
a(2) = 0 because only option is p = q = 2. a(3) = 3 because 3^2 mod 6 = 3 is the largest remainder.
Programs
-
Maple
Primes:= {}: A[2]:= 0: for n from 3 to 200 do if not isprime(n) then A[n]:= A[n-1] else Primes:= Primes union {n}; A[n]:= max(A[n-1], seq(p*n mod (p+n),p=Primes)) fi od: seq(A[n],n=2..200); # Robert Israel, Apr 08 2018
-
Mathematica
a[n_] := Max@ Flatten@ Table[p=Prime[i]; q=Prime[j]; Mod[p q, p + q], {i, PrimePi[n]}, {j, i}]; Array[a, 75, 2]
-
PARI
first(n) = {my(t = 1, u = nextprime(n+1), bet = vector(primepi(u)), res = List(vector(u)), p, q); forprime(p = 2, u, forprime(q = 2, p, r = (p*q) % (p+q); for(i = t, #bet, bet[i] = max(bet[i], r))); t++); t = 1; p = 2; forprime(q = 3, u, for(i = p, q - 1, res[i] = bet[t]); p = q; t++); res[u] = bet[t]; listpop(res,1); res} \\ David A. Corneth, Apr 08 2018
Comments