A302451 a(n) = [x^n] Product_{k>=0} (1 + n*x^(2^k)).
1, 1, 2, 9, 4, 25, 36, 343, 8, 81, 100, 1331, 144, 2197, 2744, 50625, 16, 289, 324, 6859, 400, 9261, 10648, 279841, 576, 15625, 17576, 531441, 21952, 707281, 810000, 28629151, 32, 1089, 1156, 42875, 1296, 50653, 54872, 2313441, 1600, 68921, 74088, 3418801, 85184, 4100625, 4477456, 229345007, 2304
Offset: 0
Keywords
Examples
+---+-----+---+----------+ | n | bin.|1's| a(n) | +---+-----+---+----------+ | 0 | 0 | 0 | 0^0 = 1 | | 1 | 1 | 1 | 1^1 = 1 | | 2 | 10 | 1 | 2^1 = 2 | | 3 | 11 | 2 | 3^2 = 9 | | 4 | 100 | 1 | 4^1 = 4 | | 5 | 101 | 2 | 5^2 = 25 | | 6 | 110 | 2 | 6^2 = 36 | +---+-----+---+----------+ bin. - n written in base 2; 1's - number of 1's in binary expansion of n.
Links
Programs
-
Mathematica
Table[SeriesCoefficient[Product[(1 + n x^(2^k)), {k, 0, n}], {x, 0, n}], {n, 0, 48}] Join[{1}, Table[n^DigitCount[n, 2, 1], {n, 48}]]
-
PARI
a(n) = n^hammingweight(n); \\ Altug Alkan, Apr 08 2018