cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302451 a(n) = [x^n] Product_{k>=0} (1 + n*x^(2^k)).

Original entry on oeis.org

1, 1, 2, 9, 4, 25, 36, 343, 8, 81, 100, 1331, 144, 2197, 2744, 50625, 16, 289, 324, 6859, 400, 9261, 10648, 279841, 576, 15625, 17576, 531441, 21952, 707281, 810000, 28629151, 32, 1089, 1156, 42875, 1296, 50653, 54872, 2313441, 1600, 68921, 74088, 3418801, 85184, 4100625, 4477456, 229345007, 2304
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Examples

			+---+-----+---+----------+
| n | bin.|1's|   a(n)   |
+---+-----+---+----------+
| 0 |   0 | 0 | 0^0 =  1 |
| 1 |   1 | 1 | 1^1 =  1 |
| 2 |  10 | 1 | 2^1 =  2 |
| 3 |  11 | 2 | 3^2 =  9 |
| 4 | 100 | 1 | 4^1 =  4 |
| 5 | 101 | 2 | 5^2 = 25 |
| 6 | 110 | 2 | 6^2 = 36 |
+---+-----+---+----------+
bin. - n written in base 2;
1's - number of 1's in binary expansion of n.
		

Crossrefs

Main diagonal of A256140.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n x^(2^k)), {k, 0, n}], {x, 0, n}], {n, 0, 48}]
    Join[{1}, Table[n^DigitCount[n, 2, 1], {n, 48}]]
  • PARI
    a(n) = n^hammingweight(n); \\ Altug Alkan, Apr 08 2018

Formula

a(n) = n^A000120(n).
a(n) = A256140(n,n).
a(2^k) = 2^k.
a(2^k-1) = (2^k - 1)^k.