A302478 Products of prime numbers of squarefree index.
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 93, 94
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 06: {{},{1}} 08: {{},{},{}} 09: {{1},{1}} 10: {{},{2}} 11: {{3}} 12: {{},{},{1}} 13: {{1,2}} 15: {{1},{2}} 16: {{},{},{},{}} 17: {{4}} 18: {{},{1},{1}} 20: {{},{},{2}} 22: {{},{3}} 24: {{},{},{},{1}} 25: {{2},{2}} 26: {{},{1,2}} 27: {{1},{1},{1}} 29: {{1,3}} 30: {{},{1},{2}} 31: {{5}} 32: {{},{},{},{},{}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[100],Or[#===1,And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
-
PARI
ok(n)={!#select(p->!issquarefree(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
Comments