A302483 Number of FF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths.
1, 1, 2, 2, 5, 9, 17, 32, 59, 107, 192, 342, 606, 1070, 1885, 3316, 5828, 10237, 17975, 31555, 55387, 97210, 170605, 299405, 525434, 922088, 1618168, 2839704, 4983351, 8745190, 15346758, 26931703, 47261865, 82938813, 145547493, 255418068, 448227487, 786584431
Offset: 0
Keywords
Examples
There are 14 Łukasiewicz of length 4 divided in the 5 following FF-equivalence classes: {FFFF}, {FFU_{1}D}, {U_{1}DFF}, {U_{1}FFD}, {FU_{1}DF, FU_{1}FD, FU_{2}DD, U_{1}DU_{1}D, U_{1}FDF, U_{1}U_{1}DD, U_{2}DDF, U_{2}DFD, U_{2}FDD, U_{3}DDD}.
Links
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(1 - 3 x + 4 x^2 - 5 x^3 + 7 x^4 - 7 x^5 + 6 x^6 - 3 x^7 + x^8)/((1 - 2 x + x^2 - x^3) (1 - x)^2), {x, 0, 32}], x] (* Michael De Vlieger, Apr 12 2018 *)
-
PARI
x='x+O('x^99); Vec((1-3*x+4*x^2-5*x^3+7*x^4-7*x^5+6*x^6-3*x^7+x^8)/((1-2*x+x^2-x^3)*(1-x)^2)) \\ Altug Alkan, Apr 12 2018
Formula
G.f.: (1 - 3*x + 4*x^2 - 5*x^3 + 7*x^4 - 7*x^5 + 6*x^6 - 3*x^7 + x^8) / ((1-2*x+x^2-x^3) * (1-x)^2).
Comments