cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302483 Number of FF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths.

Original entry on oeis.org

1, 1, 2, 2, 5, 9, 17, 32, 59, 107, 192, 342, 606, 1070, 1885, 3316, 5828, 10237, 17975, 31555, 55387, 97210, 170605, 299405, 525434, 922088, 1618168, 2839704, 4983351, 8745190, 15346758, 26931703, 47261865, 82938813, 145547493, 255418068, 448227487, 786584431
Offset: 0

Views

Author

Sergey Kirgizov, Apr 08 2018

Keywords

Comments

Number of FF-equivalence classes of Łukasiewicz paths. A Łukasiewicz path of length n is a lattice path from (0,0) to (n,0) using up steps U_{k} = (1,k) for any positive integer k, flat steps F = (1,0) and down steps D = (1,-1). Łukasiewicz paths are alpha-equivalent whenever the positions of occurrences of pattern alpha are identical on these paths.

Examples

			There are 14 Łukasiewicz of length 4 divided in the 5 following FF-equivalence classes: {FFFF}, {FFU_{1}D}, {U_{1}DFF}, {U_{1}FFD}, {FU_{1}DF, FU_{1}FD, FU_{2}DD, U_{1}DU_{1}D, U_{1}FDF, U_{1}U_{1}DD, U_{2}DDF, U_{2}DFD, U_{2}FDD, U_{3}DDD}.
		

Crossrefs

Cf. A001405, A191385, A000045, A005251, A000325, A011782, A001006, A023431, A292460, A004148 enumerates the numbers of P-equivalence classes of Łukasiewicz paths for other values of P.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x + 4 x^2 - 5 x^3 + 7 x^4 - 7 x^5 + 6 x^6 - 3 x^7 + x^8)/((1 - 2 x + x^2 - x^3) (1 - x)^2), {x, 0, 32}], x] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    x='x+O('x^99); Vec((1-3*x+4*x^2-5*x^3+7*x^4-7*x^5+6*x^6-3*x^7+x^8)/((1-2*x+x^2-x^3)*(1-x)^2)) \\ Altug Alkan, Apr 12 2018

Formula

G.f.: (1 - 3*x + 4*x^2 - 5*x^3 + 7*x^4 - 7*x^5 + 6*x^6 - 3*x^7 + x^8) / ((1-2*x+x^2-x^3) * (1-x)^2).