A302484 Number of Truchet tilings of an n X n square up to rotation and reflection.
1, 1, 43, 32896, 536911936, 140737496743936, 590295810401655390208, 39614081257132309534260330496, 42535295865117307944451040976113238016, 730750818665451459101843020821051317142553624576, 200867255532373784442745261543437606940418017880259520626688
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..40
- Peter Kagey, Illustration of the a(2) = 43 tilings of the 2 X 2 grid.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
- Eric Weisstein's World of Mathematics, Truchet Tiling
- Wikipedia, Truchet tiles
Programs
-
Mathematica
f[n_]:=If[EvenQ[n],(4^(n^2) + 5 4^(n^2/2) + 2 4^(n^2/4))/8, (4^(n^2) + 2 4^(n^2/2))/8]; Join[{1}, Array[f, 60]] (* Vincenzo Librandi, Apr 09 2018 *)
-
Python
def a(n): return (4**(n*n)+2**(n*n+1))//8 if n%2 else (4**(n*n)+5*4**(n*n//2)+2*4**(n*n//4))//8
Formula
a(n) = (4^(n^2) + 5*4^(n^2/2) + 2*4^(n^2/4)) / 8 if n is even.
a(n) = (4^(n^2) + 2*4^(n^2/2)) / 8 if n is odd.
Comments