cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302497 Powers of primes of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317, 331
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is not in the sequence because 49 = prime(4)^2 but 4 is not squarefree.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    is(n) = if(n==1, return(1), my(x=isprimepower(n)); if(x > 0, if(issquarefree(primepi(ceil(n^(1/x)))), return(1)))); 0 \\ Felix Fröhlich, Apr 10 2018