A302497 Powers of primes of squarefree index.
1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317, 331
Offset: 1
Keywords
Examples
49 is not in the sequence because 49 = prime(4)^2 but 4 is not squarefree. Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant set multisystems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 08: {{},{},{}} 09: {{1},{1}} 11: {{3}} 13: {{1,2}} 16: {{},{},{},{}} 17: {{4}} 25: {{2},{2}} 27: {{1},{1},{1}} 29: {{1,3}} 31: {{5}} 32: {{},{},{},{},{}} 41: {{6}} 43: {{1,4}} 47: {{2,3}} 59: {{7}} 64: {{},{},{},{},{},{}}
Crossrefs
Programs
-
Mathematica
Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
-
PARI
is(n) = if(n==1, return(1), my(x=isprimepower(n)); if(x > 0, if(issquarefree(primepi(ceil(n^(1/x)))), return(1)))); 0 \\ Felix Fröhlich, Apr 10 2018
Comments