A302521 Odd numbers whose prime indices are squarefree and have disjoint prime indices. Numbers n such that the n-th multiset multisystem is a set partition.
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 41, 43, 47, 51, 55, 59, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 215, 219, 221, 233, 241, 249, 255, 257, 269, 271
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set partitions. 01: {} 03: {{1}} 05: {{2}} 11: {{3}} 13: {{1,2}} 15: {{1},{2}} 17: {{4}} 29: {{1,3}} 31: {{5}} 33: {{1},{3}} 41: {{6}} 43: {{1,4}} 47: {{2,3}} 51: {{1},{4}} 55: {{2},{3}} 59: {{7}} 67: {{8}} 73: {{2,4}} 79: {{1,5}} 83: {{9}} 85: {{2},{4}} 93: {{1},{5}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1,100,2],UnsameQ@@Join@@primeMS/@primeMS[#]&]
Comments