cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326704 BII-numbers of antichains of nonempty sets.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 308, 320, 512, 513, 516, 520, 521, 524
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain of sets, no edge is a subset or superset of any other edge.

Examples

			The sequence of all antichains of nonempty sets together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  20: {{1,2},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  36: {{1,2},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains of sets are counted by A000372.
Antichains of nonempty sets are counted by A014466.
MM-numbers of antichains of multisets are A316476.
BII-numbers of chains of nonempty sets are A326703.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],stableQ[bpe/@bpe[#],SubsetQ]&]
  • Python
    # see linked program

A326701 BII-numbers of set partitions.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 32, 33, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 512, 513, 520, 521, 528, 1024, 1032, 2048, 2049, 2050, 2051, 2052, 4096, 4098, 8192, 8193, 16384, 32768, 32769
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, and {{2},{1,3}} is a set partition, it follows that 18 belongs to the sequence.

Examples

			The sequence of all set partitions together with their BII numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  132: {{1,2},{4}}
  136: {{3},{4}}
		

Crossrefs

MM-numbers of set partitions are A302521.
BII-numbers of chains of nonempty sets are A326703.
BII-numbers of antichains of nonempty sets are A326704.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],UnsameQ@@Join@@bpe/@bpe[#]&]
  • Python
    from itertools import chain, count, combinations, islice
    from sympy.utilities.iterables import multiset_partitions
    def a_gen():
        yield 0
        for n in count(1):
            t = []
            for i in chain.from_iterable(combinations(range(1,n+1),r) for r in range(n+1)):
                if n in i:
                    for j in multiset_partitions(i):
                        t.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
            yield from sorted(t)
    A326701_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024

A324324 MM-numbers of crossing set partitions.

Original entry on oeis.org

2117, 3973, 4843, 5891, 6757, 7181, 7801, 10019, 10063, 11051, 11567, 13021, 13193, 13459, 14123, 14921, 17603, 18407, 18761, 18877, 19307, 19633, 20941, 21083, 21251, 21457, 22849, 23519, 23533, 24727, 26101, 27133, 27169, 27173, 27413, 29111, 30479, 31261
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part in the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is crossing if it contains two parts of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Crossrefs

Cf. A000108 (non-crossing set partitions), A001055, A001222, A003963, A005117, A016098 (crossing set partitions), A054726, A056239, A112798, A302242, A302243, A302505, A302521 (MM-numbers of set partitions).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    setptnQ[bks_]:=UnsameQ@@Join@@bks&&!MemberQ[bks,{}];
    Select[Range[10000],And[croXQ[primeMS/@primeMS[#]],setptnQ[primeMS/@primeMS[#]]]&]

A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.

Original entry on oeis.org

1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    3: {{},{1}}
    6: {{1},{2}}
    7: {{},{1},{2}}
   22: {{1},{2},{3}}
   23: {{},{1},{2},{3}}
   32: {{1,2}}
   33: {{},{1,2}}
   48: {{3},{1,2}}
   49: {{},{3},{1,2}}
   86: {{1},{2},{3},{4}}
   87: {{},{1},{2},{3},{4}}
  112: {{3},{1,2},{4}}
  113: {{},{3},{1,2},{4}}
  516: {{2},{1,3}}
  517: {{},{2},{1,3}}
  580: {{2},{4},{1,3}}
  581: {{},{2},{4},{1,3}}
		

Crossrefs

Without the covering condition we have A371289.
Without squarefree product we have A371292.
Interchanging binary and prime indices gives A371448.
A000009 counts partitions covering initial interval, compositions A107429.
A000670 counts ordered set partitions, allowing empty sets A000629.
A005117 lists squarefree numbers.
A011782 counts multisets covering an initial interval.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A302521 lists MM-numbers of set partitions, with empties A302505.
A326701 lists BII-numbers of set partitions.
A368533 lists numbers with squarefree binary indices, prime indices A302478.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]

Formula

Intersection of A371292 and A371289.

A322531 Heinz numbers of integer partitions whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 13, 15, 16, 17, 29, 31, 32, 33, 41, 43, 47, 51, 55, 59, 64, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 128, 137, 139, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 233, 241, 249, 255, 256, 257, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
All entries are themselves squarefree numbers (except the powers of 2).
The first odd term not in this sequence but in A302521 is 141, which is the MM-number (see A302242) of {{1},{2,3}}.

Examples

			The sequence of all integer partitions whose parts all have the same number of prime factors and whose product of parts is a squarefree number begins: (), (1), (2), (1,1), (3), (1,1,1), (5), (6), (3,2), (1,1,1,1), (7), (10), (11), (1,1,1,1,1), (5,2), (13), (14), (15), (7,2), (5,3), (17), (1,1,1,1,1,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SquareFreeQ[Times@@primeMS[#]]]&]

A371450 MM-number of the set-system with BII-number n.

Original entry on oeis.org

1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
     1 -> {}        -> {}
     3 -> {2}       -> {{1}}
     5 -> {3}       -> {{2}}
    15 -> {2,3}     -> {{1},{2}}
    13 -> {6}       -> {{1,2}}
    39 -> {2,6}     -> {{1},{1,2}}
    65 -> {3,6}     -> {{2},{1,2}}
   195 -> {2,3,6}   -> {{1},{2},{1,2}}
    11 -> {5}       -> {{3}}
    33 -> {2,5}     -> {{1},{3}}
    55 -> {3,5}     -> {{2},{3}}
   165 -> {2,3,5}   -> {{1},{2},{3}}
   143 -> {5,6}     -> {{1,2},{3}}
   429 -> {2,5,6}   -> {{1},{1,2},{3}}
   715 -> {3,5,6}   -> {{2},{1,2},{3}}
  2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
		

Crossrefs

The sorted version is A329629, with empties A302494.
A019565 gives Heinz number of binary indices.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326753 counts connected components for BII-numbers, ones A326749.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]
Showing 1-7 of 7 results.