A326704
BII-numbers of antichains of nonempty sets.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 308, 320, 512, 513, 516, 520, 521, 524
Offset: 1
The sequence of all antichains of nonempty sets together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
Antichains of sets are counted by
A000372.
Antichains of nonempty sets are counted by
A014466.
MM-numbers of antichains of multisets are
A316476.
BII-numbers of chains of nonempty sets are
A326703.
Cf.
A000120,
A029931,
A035327,
A048793,
A070939,
A291166,
A302521,
A326031,
A326675,
A326701,
A326702.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],stableQ[bpe/@bpe[#],SubsetQ]&]
-
# see linked program
A326701
BII-numbers of set partitions.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 32, 33, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 512, 513, 520, 521, 528, 1024, 1032, 2048, 2049, 2050, 2051, 2052, 4096, 4098, 8192, 8193, 16384, 32768, 32769
Offset: 1
The sequence of all set partitions together with their BII numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
130: {{2},{4}}
131: {{1},{2},{4}}
132: {{1,2},{4}}
136: {{3},{4}}
MM-numbers of set partitions are
A302521.
BII-numbers of chains of nonempty sets are
A326703.
BII-numbers of antichains of nonempty sets are
A326704.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],UnsameQ@@Join@@bpe/@bpe[#]&]
-
from itertools import chain, count, combinations, islice
from sympy.utilities.iterables import multiset_partitions
def a_gen():
yield 0
for n in count(1):
t = []
for i in chain.from_iterable(combinations(range(1,n+1),r) for r in range(n+1)):
if n in i:
for j in multiset_partitions(i):
t.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
yield from sorted(t)
A326701_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024
A324324
MM-numbers of crossing set partitions.
Original entry on oeis.org
2117, 3973, 4843, 5891, 6757, 7181, 7801, 10019, 10063, 11051, 11567, 13021, 13193, 13459, 14123, 14921, 17603, 18407, 18761, 18877, 19307, 19633, 20941, 21083, 21251, 21457, 22849, 23519, 23533, 24727, 26101, 27133, 27169, 27173, 27413, 29111, 30479, 31261
Offset: 1
Cf.
A000108 (non-crossing set partitions),
A001055,
A001222,
A003963,
A005117,
A016098 (crossing set partitions),
A054726,
A056239,
A112798,
A302242,
A302243,
A302505,
A302521 (MM-numbers of set partitions).
-
croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
setptnQ[bks_]:=UnsameQ@@Join@@bks&&!MemberQ[bks,{}];
Select[Range[10000],And[croXQ[primeMS/@primeMS[#]],setptnQ[primeMS/@primeMS[#]]]&]
A371293
Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.
Original entry on oeis.org
1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
3: {{},{1}}
6: {{1},{2}}
7: {{},{1},{2}}
22: {{1},{2},{3}}
23: {{},{1},{2},{3}}
32: {{1,2}}
33: {{},{1,2}}
48: {{3},{1,2}}
49: {{},{3},{1,2}}
86: {{1},{2},{3},{4}}
87: {{},{1},{2},{3},{4}}
112: {{3},{1,2},{4}}
113: {{},{3},{1,2},{4}}
516: {{2},{1,3}}
517: {{},{2},{1,3}}
580: {{2},{4},{1,3}}
581: {{},{2},{4},{1,3}}
Without the covering condition we have
A371289.
Without squarefree product we have
A371292.
Interchanging binary and prime indices gives
A371448.
A000009 counts partitions covering initial interval, compositions
A107429.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A326701 lists BII-numbers of set partitions.
A368533 lists numbers with squarefree binary indices, prime indices
A302478.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]
A322531
Heinz numbers of integer partitions whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 11, 13, 15, 16, 17, 29, 31, 32, 33, 41, 43, 47, 51, 55, 59, 64, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 128, 137, 139, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 233, 241, 249, 255, 256, 257, 269, 271
Offset: 1
The sequence of all integer partitions whose parts all have the same number of prime factors and whose product of parts is a squarefree number begins: (), (1), (2), (1,1), (3), (1,1,1), (5), (6), (3,2), (1,1,1,1), (7), (10), (11), (1,1,1,1,1), (5,2), (13), (14), (15), (7,2), (5,3), (17), (1,1,1,1,1,1).
Cf.
A003963,
A005117,
A038041,
A056239,
A073576,
A112798,
A302242,
A302505,
A306017,
A319056,
A319169,
A320324,
A321717,
A321718,
A322526,
A322528.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SquareFreeQ[Times@@primeMS[#]]]&]
A371450
MM-number of the set-system with BII-number n.
Original entry on oeis.org
1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0
The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
1 -> {} -> {}
3 -> {2} -> {{1}}
5 -> {3} -> {{2}}
15 -> {2,3} -> {{1},{2}}
13 -> {6} -> {{1,2}}
39 -> {2,6} -> {{1},{1,2}}
65 -> {3,6} -> {{2},{1,2}}
195 -> {2,3,6} -> {{1},{2},{1,2}}
11 -> {5} -> {{3}}
33 -> {2,5} -> {{1},{3}}
55 -> {3,5} -> {{2},{3}}
165 -> {2,3,5} -> {{1},{2},{3}}
143 -> {5,6} -> {{1,2},{3}}
429 -> {2,5,6} -> {{1},{1,2},{3}}
715 -> {3,5,6} -> {{2},{1,2},{3}}
2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
A019565 gives Heinz number of binary indices.
A070939 gives length of binary expansion.
Cf.
A000720,
A003963,
A087086,
A096111,
A275024,
A302242,
A302505,
A302521,
A326782,
A329557,
A329630,
A368109.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]
A302534
Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.
Original entry on oeis.org
1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
Cf.
A000009,
A000961,
A001222,
A003963,
A005117,
A007359,
A007716,
A051424,
A056239,
A275024,
A279375,
A281113,
A289509,
A294786,
A301756,
A302242,
A302243,
A302505,
A302521.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]
Showing 1-7 of 7 results.
Comments