A302539 Squarefree numbers whose prime indices other than 1 are prime numbers.
1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 30, 31, 33, 34, 41, 51, 55, 59, 62, 66, 67, 82, 83, 85, 93, 102, 109, 110, 118, 123, 127, 134, 155, 157, 165, 166, 170, 177, 179, 186, 187, 191, 201, 205, 211, 218, 241, 246, 249, 254, 255, 277, 283, 295, 310, 314, 327, 330
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems. 01: {} 02: {{}} 03: {{1}} 05: {{2}} 06: {{},{1}} 10: {{},{2}} 11: {{3}} 15: {{1},{2}} 17: {{4}} 22: {{},{3}} 30: {{},{1},{2}} 31: {{5}} 33: {{1},{3}} 34: {{},{4}} 41: {{6}} 51: {{1},{4}} 55: {{2},{3}} 59: {{7}} 62: {{},{5}} 66: {{},{1},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[400],SquareFreeQ[#]&&And@@(PrimeQ/@DeleteCases[primeMS[#],1])&]
-
PARI
ok(n)={issquarefree(n) && !#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
Formula
Sum_{n>=1} 1/a(n) = (3/2) * Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021
Comments