cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A301942 Expansion of e.g.f. arcsin(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 4, 44, 1016, 42384, 2908544, 306305856, 46659144832, 9760451385600, 2683733034474496, 936308392553036800, 403127865773461755904, 209562975305232836300800, 129255511221696545852424192, 93252273300325219683758915584, 77766048645578119241905858314240
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arcsin(x)/cos(x) = x/1! + 4*x^3/3! + 44*x^5/5! + 1016*x^7/7! + 42384*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSin[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x)/cos(x).

A302444 Expansion of e.g.f. arcsinh(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 2, 24, 216, 15936, -77056, 90991744, -8523712768, 2731708067840, -684815907467264, 268028469798256640, -114888252320482000896, 62022733722259702579200, -38635369828053720937463808, 28349537098304682205749968896, -23874826868622028919177351004160
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arcsinh(x)/cos(x) = x/1! + 2*x^3/3! + 24*x^5/5! + 216*x^7/7! + 15936*x^9/9! - 77056*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSinh[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsinh(x)/cos(x).

A302542 Expansion of e.g.f. arctan(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 1, 29, -139, 31737, -1824151, 313750293, -51584719523, 13137192234225, -3947317975733039, 1522475446731094285, -702509124781480897211, 389722900767594460770025, -253710144786166583863030983, 192285396891961478711402819077, -167564604997707653568802119363795
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arctan(x)/cos(x) = x/1! + x^3/3! + 29*x^5/5! - 139*x^7/7! + 31737*x^9/9! - 1824151*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTan[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctan(x)/cos(x).
Showing 1-3 of 3 results.