cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302559 Partial sums of A092183.

Original entry on oeis.org

1, 601, 5584, 25052, 78557, 198233, 431928, 846336, 1530129, 2597089, 4189240, 6479980, 9677213, 14026481, 19814096, 27370272, 37072257, 49347465, 64676608, 83596828, 106704829, 134660009, 168187592, 208081760, 255208785, 310510161
Offset: 1

Views

Author

Keywords

Comments

Geometrically, the partial sums of A092183 may be interpreted as 5-dimensional hecatonicosachoronal hyperpyramidal numbers. The hecatonicosachoron is a convex regular 4-D polytope with Schlaefli symbol {5,3,3}.

Crossrefs

Cf. A092183.

Programs

  • PARI
    Vec(x*(1 + 595*x + 1993*x^2 + 543*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
    
  • PARI
    a(n) = (n*(584 - 105*n - 2120*n^2 + 135*n^3 + 1566*n^4)) / 60 \\ Colin Barker, Aug 15 2018

Formula

a(n) = Sum_{k=1..n} A092183(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 595*x + 1993*x^2 + 543*x^3) / (1 - x)^6.
a(n) = n*(584 - 105*n - 2120*n^2 + 135*n^3 + 1566*n^4)/60.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)