cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302561 Partial sums of A092182.

Original entry on oeis.org

1, 121, 1068, 4720, 14705, 36981, 80416, 157368, 284265, 482185, 777436, 1202136, 1794793, 2600885, 3673440, 5073616, 6871281, 9145593, 11985580, 15490720, 19771521, 24950101, 31160768, 38550600, 47280025, 57523401, 69469596, 83322568, 99301945
Offset: 1

Views

Author

Keywords

Comments

Geometrically, the partial sums of A092182 may be interpreted as 5-dimensional hexacosichoronal hyperpyramidal numbers. The hexacosichoron is a convex regular 4-D polytope with Schlaefli symbol {3,3,5}.

Crossrefs

Cf. A092182.

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{5,-10,10,-5,1},{1,120,947,3652,9985},30]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,121,1068,4720,14705,36981},30] (* Harvey P. Dale, May 04 2024 *)
  • PARI
    Vec(x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
    
  • PARI
    a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12 \\ Colin Barker, Aug 15 2018

Formula

a(n) = Sum_{k=1..n} A092182(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6.
a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)