A302561 Partial sums of A092182.
1, 121, 1068, 4720, 14705, 36981, 80416, 157368, 284265, 482185, 777436, 1202136, 1794793, 2600885, 3673440, 5073616, 6871281, 9145593, 11985580, 15490720, 19771521, 24950101, 31160768, 38550600, 47280025, 57523401, 69469596, 83322568, 99301945
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A092182.
Programs
-
Mathematica
Accumulate[LinearRecurrence[{5,-10,10,-5,1},{1,120,947,3652,9985},30]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,121,1068,4720,14705,36981},30] (* Harvey P. Dale, May 04 2024 *)
-
PARI
Vec(x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
-
PARI
a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12 \\ Colin Barker, Aug 15 2018
Formula
a(n) = Sum_{k=1..n} A092182(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6.
a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments