A302601 Numbers that are powers of a prime number whose prime index is also a prime power (not including 1).
1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 179, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599, 617, 625, 661, 691, 709
Offset: 1
Keywords
Examples
49 is in the sequence because 49 = prime(4)^2 = prime(prime(1)^2)^2. Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems. 001: {} 003: {{1}} 005: {{2}} 007: {{1,1}} 009: {{1},{1}} 011: {{3}} 017: {{4}} 019: {{1,1,1}} 023: {{2,2}} 025: {{2},{2}} 027: {{1},{1},{1}} 031: {{5}} 041: {{6}} 049: {{1,1},{1,1}} 053: {{1,1,1,1}} 059: {{7}} 067: {{8}} 081: {{1},{1},{1},{1}} 083: {{9}} 097: {{3,3}} 103: {{2,2,2}} 109: {{10}} 121: {{3},{3}} 125: {{2},{2},{2}} 127: {{11}} 131: {{1,1,1,1,1}}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{?(PrimePowerQ[PrimePi[#]]&),}}]&]
-
PARI
isok(n) = (n==1) || ((isprimepower(n, &p)) && isprimepower(primepi(p))); \\ Michel Marcus, Apr 10 2018
Comments