A302602 Numbers that are powers of a prime number whose prime index is either 1 or also a prime number.
1, 2, 3, 4, 5, 8, 9, 11, 16, 17, 25, 27, 31, 32, 41, 59, 64, 67, 81, 83, 109, 121, 125, 127, 128, 157, 179, 191, 211, 241, 243, 256, 277, 283, 289, 331, 353, 367, 401, 431, 461, 509, 512, 547, 563, 587, 599, 617, 625, 709, 729, 739, 773, 797, 859, 877, 919
Offset: 1
Keywords
Examples
25 is in the sequence because 25 = prime(3)^2 and 3 is a prime number. Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 08: {{},{},{}} 09: {{1},{1}} 11: {{3}} 16: {{},{},{},{}} 17: {{4}} 25: {{2},{2}} 27: {{1},{1},{1}} 31: {{5}} 32: {{},{},{},{},{}} 41: {{6}} 59: {{7}} 64: {{},{},{},{},{},{}} 67: {{8}} 81: {{1},{1},{1},{1}} 83: {{9}}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{?(#===2||PrimeQ[PrimePi[#]]&),}}]&]
-
PARI
isok(n) = (n==1) || ((isprimepower(n, &p)) && ((p==2) || isprime(primepi(p)))); \\ Michel Marcus, Apr 10 2018
Comments