cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302612 a(n) = (n+1)*(n^4-4*n^3+11*n^2-8*n+12)/12.

Original entry on oeis.org

1, 2, 6, 20, 65, 186, 462, 1016, 2025, 3730, 6446, 10572, 16601, 25130, 36870, 52656, 73457, 100386, 134710, 177860, 231441, 297242, 377246, 473640, 588825, 725426, 886302, 1074556, 1293545, 1546890, 1838486, 2172512, 2553441, 2986050, 3475430, 4026996
Offset: 0

Views

Author

Bryan T. Ek, Apr 10 2018

Keywords

Comments

The limit as q->1^- of the unimodal polynomial [q^(n*k+n+4)-q^(n*k+n+3)+q^(n*k+n+1)-q^(n*k+4)-q^((n-1)*k+n+3)+q^((n-1)*k+3)+q^(k+n+1)-q^(k+1)-q^n+q^3-q+1]/[(1-q)^2(1-q^2)(1-q^n)] after making the simplification k=n. This unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=2. See G_2(n,k) from arXiv:1711.11252.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=4, G_2(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+6*q^10+6*q^9+7*q^8+6*q^7+6*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 65.
		

Crossrefs

Programs

  • PARI
    Vec((1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Apr 11 2018

Formula

From Colin Barker, Apr 11 2018: (Start)
G.f.: (1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018