A302644 a(n) = (n+2)*(n+1)*(n^6-12*n^5+70*n^4-210*n^3+409*n^2-378*n+360)/720.
1, 2, 6, 20, 70, 252, 896, 2976, 8955, 24310, 60038, 136500, 289016, 575680, 1087920, 1964384, 3408789, 5712426, 9282070, 14674100, 22635690, 34153988, 50514256, 73368000, 104812175, 147480606, 204648822, 280353556, 379528220, 508155720, 673440032, 883998016
Offset: 0
Examples
For n=4, G_3(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+7*q^10+7*q^9+8*q^8+7*q^7+7*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 70.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bryan Ek, q-Binomials and related symmetric unimodal polynomials, arXiv:1711.11252 [math.CO], 2017-2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
PARI
Vec((1 - 7*x + 24*x^2 - 46*x^3 + 64*x^4 - 36*x^5 + 56*x^6) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Apr 11 2018
Formula
a(n) = (n+2)*(n+1)*(n^6-12*n^5+70*n^4-210*n^3+409*n^2-378*n+360)/720.
From Colin Barker, Apr 11 2018: (Start)
G.f.: (1 - 7*x + 24*x^2 - 46*x^3 + 64*x^4 - 36*x^5 + 56*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
Extensions
More terms from Colin Barker, Apr 11 2018
Comments