cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302645 Values of unimodal polynomial analogous to A302612 and A302644 arising from a partition size <= 4 restriction.

Original entry on oeis.org

0, 1, 2, 6, 20, 70, 252, 924, 3432, 12705, 45430, 152438, 472836, 1352078, 3578680, 8827080, 20439984, 44745513, 93185994, 185640070, 355452020, 656846190, 1175604980, 2044130980, 3462303000, 5725877625, 9264588606, 14692562262, 22874204836, 35009334470
Offset: 0

Views

Author

Bryan T. Ek, Apr 10 2018

Keywords

Comments

Consider the unimodal polynomial from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=4. See G_4(n,k) from arXiv:1711.11252. If we make the simplification k=n and take the limit as q->1^-, we obtain the listed polynomial.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=6, G_4(6,6)=q^36+q^35+2*q^34+3*q^33+5*q^32+7*q^31+11*q^30+13*q^29+18*q^28+22*q^27+28*q^26+32*q^25+39*q^24+42*q^23+48*q^22+51*q^21+55*q^20+55*q^19+58*q^18+55*q^17+55*q^16+51*q^15+48*q^14+42*q^13+39*q^12+32*q^11+28*q^10+22*q^9+18*q^8+13*q^7+11*q^6+7*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the referenced paper). Then substituting q=1 yields 924.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(1 - 10*x + 48*x^2 - 140*x^3 + 281*x^4 - 390*x^5 + 430*x^6 - 220*x^7 + 330*x^8) / (1 - x)^12 + O(x^40))) \\ Colin Barker, Apr 19 2018

Formula

a(n) = n*(n+2)*(n+1)*(n^8-32*n^7+462*n^6-3836*n^5+20013*n^4-66836*n^3+140804*n^2-171216*n+100800)/120960.
From Colin Barker, Apr 19 2018: (Start)
G.f.: x*(1 - 10*x + 48*x^2 - 140*x^3 + 281*x^4 - 390*x^5 + 430*x^6 - 220*x^7 + 330*x^8) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>11.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018
0 prepended to the sequence and formulas adjusted accordingly by Colin Barker, Apr 19 2018