cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302653 Number of minimum total dominating sets in the n-cycle graph.

Original entry on oeis.org

1, 1, 3, 4, 5, 9, 7, 4, 9, 25, 11, 4, 13, 49, 15, 4, 17, 81, 19, 4, 21, 121, 23, 4, 25, 169, 27, 4, 29, 225, 31, 4, 33, 289, 35, 4, 37, 361, 39, 4, 41, 441, 43, 4, 45, 529, 47, 4, 49, 625, 51, 4, 53, 729, 55, 4, 57, 841, 59, 4, 61, 961, 63, 4, 65, 1089, 67, 4, 69, 1225, 71, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Programs

  • Mathematica
    Table[((-1)^n (n - 4)^2 + (n + 4)^2 - 2 (n - 4) (n + 4) cos(n Pi/2))/16, {n, 80}]
    Table[Piecewise[{{n, Mod[n, 2] == 1}, {4, Mod[n, 4] == 0}, {(n/2)^2, Mod[n, 4] == 2}}], {n, 80}]
    LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 1, 3, 4, 5, 9, 7, 4, 9, 25, 11, 4}, 80]
  • PARI
    Vec(x*(1 + x + 3*x^2 + 4*x^3 + 2*x^4 + 6*x^5 - 2*x^6 - 8*x^7 - 3*x^8 + x^9 - x^10 + 4*x^11) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^70)) \\ Colin Barker, Dec 25 2019

Formula

a(n) = n for odd n.
a(n) = 4 for n mod 4 = 0.
a(n) = (n/2)^2 for n mod 4 = 2.
a(n) = ((-1)^n*(n - 4)^2 + (n + 4)^2 - 2*(n - 4)*(n + 4)*cos(n*Pi/2))/16.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(1 + x + 3*x^2 + 4*x^3 + 2*x^4 + 6*x^5 - 2*x^6 - 8*x^7 - 3*x^8 + x^9 - x^10 + 4*x^11) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3). - Colin Barker, Dec 25 2019