cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302694 a(n) is the smallest integer k such that A002828(k*n) = 3.

Original entry on oeis.org

3, 3, 1, 3, 6, 1, 2, 3, 3, 3, 1, 1, 6, 1, 2, 3, 3, 3, 1, 6, 1, 1, 2, 1, 3, 3, 1, 2, 6, 1, 2, 3, 1, 3, 1, 3, 6, 1, 2, 3, 3, 1, 1, 1, 6, 1, 2, 1, 3, 3, 1, 6, 6, 1, 2, 1, 1, 3, 1, 2, 6, 1, 2, 3, 3, 1, 1, 3, 1, 1, 2, 3, 3, 3, 1, 1, 1, 1, 2, 6, 3, 3, 1, 1, 6, 1, 2, 1, 3, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2018

Keywords

Comments

All terms are squarefree.

Examples

			a(2) = 3 because A002828(1*2) = 2, A002828(2*2) = 1,..., and 3 is the smallest multiplier leading to A002828(3*2) = 3.
		

Crossrefs

Programs

  • Maple
    A302694 := proc(n)
        for k from 1 do
            if A002828(k*n) = 3 then
                return k;
            end if;
        end do:
    end proc:
    seq(A302694(n),n=1..100) ; # R. J. Mathar, Apr 16 2018
  • PARI
    istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1;
    isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7;
    a002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))); \\ A002828
    a(n) = {my(m=1); while(a002828(m*n)!=3, m++); m; } \\ Michel Marcus, Apr 12 2018

Formula

a(n^2) = 3.
Conjecture: a(n) <= 6.

Extensions

Name corrected and more terms added by Michel Marcus, Apr 12 2018

A302972 a(n) is the smallest integer r such that A002828(r*n) = 4.

Original entry on oeis.org

7, 14, 5, 7, 3, 10, 1, 14, 7, 6, 5, 5, 3, 2, 1, 7, 7, 14, 5, 3, 3, 10, 1, 10, 7, 6, 5, 1, 3, 2, 1, 14, 7, 14, 5, 7, 3, 10, 1, 6, 7, 6, 5, 5, 3, 2, 1, 5, 7, 14, 5, 3, 3, 10, 1, 2, 7, 6, 5, 1, 3, 2, 1, 7, 7, 14, 5, 7, 3, 10, 1, 14, 7, 6, 5, 5, 3, 2, 1, 3, 7, 14, 5, 3, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 16 2018

Keywords

Comments

All terms are squarefree.

Examples

			a(1) = 7 because A002828(1*1) = 1, A002828(2*1) = 2, A002828(3*1) = 3, A002828(5*1) = 2, A002828(6*1) = 3, ..., and 7 is the smallest positive multiplier leading to A002828(7*1) = 7.
		

Crossrefs

Programs

  • PARI
    istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1;
    isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7;
    a002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))); \\ A002828
    a(n) = {my(m=1); while(a002828(m*n)!=4, m++); m; } \\ Michel Marcus, Apr 17 2018

Formula

a(n^2) = 7.
a(n^2) + A302694(n^2) + A302690(n^2) + A007913(n^2) = 13.
a(n^2)*A302694(n^2)*A302690(n^2)*A007913(n^2) = 42.

Extensions

More terms from Michel Marcus, Apr 17 2018
Showing 1-2 of 2 results.